首页 > 家居生活

变频器维修网,变频器修理处理方法 检测步骤介绍

变频器维修网,变频器修理处理方法 检测步骤介绍

变频器pwm反馈数据异常

主回路主要由三相或单相整流桥、平滑电容器、滤波电容器、IPM逆变桥、限流电阻、接触器等元件组成。其中许多常见故障是由电解电容引起。电解电容的寿命主要由加在其两端的直流电压和内部温度所决定,在回路设计时已经选定了电容器的型号,所以内部的温度对电解电容器的寿命起决定作用。电解电容器会直接影响到变频器的使用寿命,一般温度每上升10℃,寿命减半。因此一方面在安装时要考虑适当的环境温度,另一方面可以采取措施减少脉动电流。采用改善功率因数的交流或直流电抗器可以减少脉动电流,从而延长电解电容器的寿命。在电容器维护时,通常以比较容易测量的静电容量来判断电解电容器的劣化情况,当静电容量低于额定值的80%,绝缘阻抗在5 MΩ以下时,应考虑更换电解电容器。

2、主回路典型故障分析

故障现象:变频器在加速、减速或正常运行时出现过电流跳闸。首先应区分是由于负载原因,还是变频器的原因引起的。如果是变频器的故障,可通过历史记录查询在跳闸时的电流,超过了变频器的额定电流或电子热继电器的设定值,而三相电压和电流是平衡的,则应考虑是否有过载或突变,如电机堵转等。在负载惯性较大时,可适当延长加速时间,此过程对变频器本身并无损坏。若跳闸时的电流,在变频器的额定电流或在电子热继电器的设定范围内,可判断是IPM模块或相关部分发生故障。首先可以通过测量变频器的主回路输出端子U、V、W,分别与直流侧的P、N端子之间的正反向电阻,来判断IPM模块是否损坏。如模块未损坏,则是驱动电路出了故障。如果减速时IPM模块过流或变频器对地短路跳闸,一般是逆变器的上半桥的模块或其驱动电路故障;而加速时IPM模块过流,则是下半桥的模块或其驱动电路部分故障,发生这些故障的原因,多是由于外部灰尘进入变频器内部或环境潮湿引起。

3、控制回路故障分析

控制回路影响变频器寿命的是电源部分,是平滑电容器和IPM电路板中的缓冲电容器,其原理与前述相同,但这里的电容器中通过的脉动电流,是基本不受主回路负载影响的定值,故其寿命主要由温度和通电时间决定。由于电容器都焊接在电路板上,通过测量静电容量来判断劣化情况比较困难,一般根据电容器环境温度以及使用时间,来推算是否接近其使用寿命。

1)电源电路板给控制回路、IPM驱动电路和表面*作显示板以及风扇等提供电源,这些电源一般都是从主电路输出的直流电压,通过开关电源再分别整流而得到的。因此,某一路电源短路,除了本路的整流电路受损外,还可能影响其他部分的电源,如由于误*作而使控制电源与公共接地短接,致使电源电路板上开关电源部分损坏,风扇电源的短路导致其他电源断电等。一般通过观察电源电路板就比较容易发现。

2)逻辑控制电路板是变频器的核心,它集中了CPU、MPU等大规模集成电路,具有很高的可靠性,本身出现故障的概率很小,但有时会因开机而使全部控制端子同时闭合,导致变频器出现EEPROM故障,这只要对EEPROM重新复位就可以了。

3)电路板包含驱动和缓冲电路,以及过电压、缺相等保护电路。从逻辑控制板来的PWM信号,通过光耦合将电压驱动信号输入IPM模块,因而在检测模快的同时,还应测量IPM模块上的光耦。

4、冷却系统

冷却系统主要包括散热片和冷却风扇。其中冷却风扇寿命较短,临近使用寿命时,风扇产生震动,噪声增大最后停转,变频器出现IPM过热跳闸。冷却风扇的寿命受陷于轴承,大约为10000~35000 h。当变频器连续运转时,需要2~3年更换一次风扇或轴承。为了延长风扇的寿命,一些产品的风扇只在变频器运转时而不是电源开启时运行。

5、外部的电磁感应干扰

广州科誉变频器维修培训学校提醒大家如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。减少噪声干扰的具体方法有:变频器周围所有继电器、接触器的控制线圈上,加装防止冲击电压的吸收装置,如RC浪涌吸收器,其接线不能超过20 cm;尽量缩短控制回路的配线距离,并使其与主回路分离;变频器控制回路配线绞合节距离应在15 mm以上,与主回路保持10 cm以上的间距;变频器距离电动机很远时,这时一方面可加大导线截面面积,保证线路压降在2%以内,同时应加装变频器输出电抗器,用来补偿因长距离导线产生的分布电容的充电电流。变频器接地端子应按规定进行接地,必须在专用接地点可靠接地,不能同电焊、动力接地混用;变频器输入端安装无线电噪声滤波器,减少输入高次谐波,从而可降低从电源线到电子设备的噪声影响;同时在变频器的输出端也安装无线电噪声滤波器,以降低其输出端的线路噪声。

6、电源异常

电源异常大致分为缺相、低电压、停电,有时也出现它们的混合形式。这些异常现象的主要原因,多半是输电线路因风、雪、雷击造成的,有时也因为同一供电系统内出现对地短路及相间短路。而雷击因地域和季节有很大差异。除电压波动外,有些电网或自行发电的单位,也会出现频率波动,并且这些现象有时在短时间内重复出现,为保证设备的正常运行,对变频器供电电源也提出相应要求。有条件因需可加装自动切换的不停电源装置或备用的稳定电源。

7、雷击、感应雷电

雷击或感应雷击形成的冲击电压,有时也会造成变频器的损坏。此外,当电源系统一次侧带有真空断路器时,短路开闭会产生较高的冲击电压。为防止因冲击电压造成过电压损坏,通常需要在变频器的输入端加压敏电阻等吸收器件。真空断路器应增加RC浪涌吸收器。若变压器一次侧有真空断路器,应在控制时序上,保证真空断路器动作前先将变频器断开。

康沃变频器维修方法

康沃变频器本身就占有一定的市场,在被德国博士*收购很多产品得到技术及市场的改善,产品链也有加强与完善,部分康沃变频器系列的产品也被得到加强,随着康沃变频器应用的不断推广,康沃品牌知名度也得到进一步加强,但是,康沃变频器使用久了也会出现故障,这就需要掌握康沃变频器维修的方法。接下来为大家介绍康沃变频器维修方法。

康沃变频器维修方法:

1、故障P.OFF

康沃变频器上电显示P.OFF延时1~2秒后显示0,表示变频器处于待机状态。在应用中若出现变频器上电后一直显示P.OFF而不跳0现象,主要原因可能为输入电压过低、输入电源缺相及变频器电压检测电路故障。处理时应先测量电源三相输入电压,R、S、T端子正常电压为三相380V,如果输入电压低于320V或输入电源缺相,则应总判定为外部电源故障。如果输入电源正常,则可判断为变频器内部电压检测电路或缺相保护故障。对于康沃G1/P1系列90kW及以上机型变频器,故障原因主要为内部缺相检测电路异常,缺相检测电路由两个单相380V/18.5V变压器及整流电路构成,处理时可测量变压器的输出电压是否正常。

2、故障ER08

康沃变频器出现ER08故障代码表示变频器处于欠压故障状态。主要原因有输入电源过低或缺相、变频器内部电压检测电路异常、变频器主回路电路异常等。通用变频器电压输入范围为三相320V~460V。在实际应用中当变频器满载运行,而输入电压低于340V时可能会出现欠压保护,这时应提高电网输入电压或变频器降额使用;若输入电压正常,变频器在运行中却出现ER08故障,则可判断为变频器内部故障。如图1所示可能为主回路中KS接触器跳开使限流电阻在变频器运行时串联到主回路中,这时若变频器带负载运行便会出现ER08故障。若变频器主回路正常,出现ER08报警的原因大多为电压检测电路故障。一般变频器的电压检测电路为开关电源的一组输出,经过取样、比较电路后给CPU处理器,当超过设定值时,CPU根据比较信号输出故障关闭信号并关闭IGBT,同时显示故障代码。

3、故障ER02/ER05

故障代码ER02/ER05表示变频器在减速*现过流或过压故障,主要原因为减速时间过短、负载回馈能量过大未能及时被释放。若电机驱动惯性较大的负载,当变频器输出频率(即电机的同步转速)下降时电机的实际转速可能大于同步转速,这时电机处于发电状态,部分能量将通过变频器的逆变电路返回到直流回路,从而使变频器出现过压或过流保护。现场处理时,在不影响生产工艺的情况下可延长变频器的减速时间,若负载惯性较大又要求在一定时间内停机时则要求加装外部制动电阻或制动单元。康沃G2/P2系列变频器22kW以下的机型均内置制动单元,只需加外部制动电阻即可,电阻选配可参考产品说明。对于功率22kW以上的机型则要求外加制动单元和制动电阻。

ER02/ER05故障一般只在变频器减速停机过程中才会出现,如果变频器在其它运行状态下出现该故障,则可能为变频器内部的开关电源部分如电压检测电路或电流检测电路异常而引起。

4、故障ER17

代码ER17表示电流检测故障,通用变频器电流检测一般采用电流传感器,如图2中H1和H2所示。通过检测变频器两相输出电流来实现变频器运行电流的检测、显示及保护功能,输出电流经电流传感器输出线性电压信号,经放大比较电路处理后输出到CPU处理器,CPU处理器根据其电压大小判断变频器是否处于过电流状态,如果输出电流超过保护值,则故障关闭保护电路动作关闭IGBT脉冲信号,实现保护功能。

康沃变频器出现ER17故障主要原因为电流传感器故障或电流检测放大比较电路异常,前者可通过更换传感器解决,后者大多为相关电流检测IC电路或IC芯片工作电源异常,可通过更换相关IC或维修相关电源解决。

5、故障ER15

代码ER15表示逆变模块IPM、IGBT故障,主要原因为输出对地短路、电机线过长(超过50米)、逆变模块或其保护电路动作。现场处理时先拆去电机输出线,测量变频器逆变模块,观察输出是否存在短路,同时检查电机是否对地短路及电机线是否超过允许范围,如上述均正常则可能为变频器内部IGBT模块驱动或保护电路异常。一般IGBT过流保护是通过检测IBGT导通时的管压降动作的。

当IGBT正常导通时其饱和压降很低,当IGBT过流时管压降VCE会随着短路电流的增加而增大,IGBT驱动保护电路通过二极管DB可测量饱和压降,并经过处理电路传送给CPU处理器,同时关闭IGBT输出达到保护作用。如出现Er15故障,现场处理时可更换驱动模块或检修相关电路。

6、故障ER11

康沃变频器出现ER11故障表示变频器过热,可能原因主要有:风道阻塞、环境温度过高、散热风扇损坏及温度检测电路异常。现场处理时先判断变频器是否确实存在温度过高情况,如果温度过高可先按以上原因排除故障;若变频器温度正常,下出现ER11报警则则可能为为温度检测电路故障。康沃22kW以下机型采用的七单元逆变模块,内部集成有温度元件,如果模块内此部分电路故障也会出现ER11报警,另一方面当温度检测运算电路异常时也会出现同样故障现象。

以上是对康沃变频器维修方法的具体介绍。康沃变频器的产品系列中CVF-G3系列通用型变频器、CVF-V1系列矢量变频器等都是比较受欢迎的一些产品。了解这些康沃变频器系列产品的维修可以更大程度上方便用户使用,以上所讲述的康沃变频器使用中常出现一些故障,并就各种故障做出分析,并就各种情况的处理方法进行了详细的介绍。

变频器的原理及检测

变频器维修检测常用方法

在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。

一、静态测试

1、测试整流电路

找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑

表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P

端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复

以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值

三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥

故障或起动电阻出现故障。

2、测试逆变电路

将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基

本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则

可确定逆变模块故障

二、动态测试

在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意

以下几点:

1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机

(炸电容、压敏电阻、模块等)。

2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器

出现故障,严重时会出现炸机等情况。

3、上电后检测故障显示内容,并初步断定故障及原因。

4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下

启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模

块或驱动板等有故障

5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载

测试。

三、故障判断

1、整流模块损坏

一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现

场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有*染

的设备等。

2、逆变模块损坏

一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波

形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连

接电缆。在确定无任何故障下,运行变频器。

3、上电无显示

一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻

损坏,也有可能是面板损坏。

4、上电后显示过电压或欠电压

一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,

更换损坏的器件。

5、上电后显示过电流或接地短路

一般是由于电流检测电路损坏。如霍尔元件、运放等。

6、启动显示过电流

一般是由于驱动电路或逆变模块损坏引起。

7、空载输出电压正常,带载后显示过载或过电流

该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起。

变频器维修的常见方法

1、测试整流电路

找下结果,可以判定电路已出现异常,A.到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以阻值三相不平衡,说明整流桥有故障.B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或启动电阻出现故障。

2、测试逆变电路

将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒N端,重复以上步骤应得到相同结果,否则可确定逆变模块有故障。在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点:

1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等);

2、检查变频器各接插口是否已正确连接,连接是否有松动,连接异常有时可能会导致变频器出现故障,严重时会出炸机等情况;

3、上电后检测故障显示内容,并初步断定故障及原因;

4、如未显示故障,首先检查参数是否有异常,并将参数复归后,在空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障;

5、在输出电压正常(无缺相、三相平衡)的情况下,负载测试,尽量是满负载测试。 1、整流模块损坏

通常是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有*染的设备等。

2、逆变模块损坏

通常是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,须注意检查马达及连接电缆。在确定无任何故障下,才能运行变频器。

3、上电无显示

通常是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,*作面板损坏同样会产生这种状况。

4、显示过电压或欠电压

通常由于输入缺相,电路老化及电路板受潮引起。解决方法是找出其电压检测电路及检测点,更换损坏的器件。

5、显示过电流或接地短路

通常是由于电流检测电路损坏。如霍尔元件、运放电路等。

6、电源与驱动板启动显示过电流

通常是由于驱动电路或逆变模块损坏引起。

7、空载输出电压正常,带载后显示过载或过电流

通常是由于参数设置不当或驱动电路老化,模块损坏引起。

变频器维修大全

第一篇:变频器的故障排除及维修

山东新风光电子科技发展有限*周加胜

1引言

IGBT变频调速器,自研制开发投入市场以来,以其优越的调速性能,可观的节能量已为广大的电机用户所接受,正以每年大规模的销售量走向社会,为电力、建材、石油、化工、煤矿等各行业的发展提供了优质的服务,其用户群已遍布生产的各行各业,成为广大用户所喜爱的产品。

这里笔者结合自己在长期的售后服务工作中经历的一些常见故障及处理方法,提出来与广大的用户及维修工作者进行探讨,以期把该产品使用得更好,更切实的为顾客服务。

2变频器运行中有故障代码显示的故障

在变频器的使用说明书中,有一栏具体阐述了变频器有故障代码显示的故障,具体如表1所示。

注:表1中Io、Vo分别是输出额定电流、输入额定电压;Vin是输入电压。

现就这几种情况作一下分析。

表1故障代码显示的故障

2.1短路保护

若变频器运行当*现短路保护,停机后显示“0”,说明是变频器内部或外部出现了短路因素。这有以下几方面的原因:

(1)负载出现短路

这种情况下如果把负载甩开,即将变频器与负载断开,空开变频器,变频器应工作正常。这时我们用兆欧表(或称摇表)测量一下电机绝缘,电机绕组将对地短路,或电机线及接线端子板绝缘变差,此时应检查电机及附属设施。

(2)变频器内部问题

如果上述检测后负载无问题,变频器空开仍出现短路保护,这是变频器内部出现问题,应予以排除。如图1所示。

图1变频器主电路示意图

在逆变桥的模块当中,若IGBT的某一个结击穿,都会形成短路保护,严重的可使桥臂击穿,甚至于送不上电,前面的断路器将跳闸。这种情况一般只允许再送一次电,以免故障扩大,造成更大的损失,应联系厂家进行维修。

(3)变频器内部干扰或检测电路有问题

有些机子内部干扰也易造成此类问题,此时变频器并无太大的问题,只是不间断的、无规律的出现短路保护,即所谓的误保护,这就是干扰造成的。

变频器的短路保护一般是从主回路的正负母线上分流取样,用电流传感器经主控板的检测传至主控芯片进行保护的,因此这些环节上任何一处出现问题,都可能造成故障停机。

对于干扰问题,现低压大功率的及中高压变频器都加了光电隔离,但也有出现干扰的,主要是电流传感器的控制线走线不合理,可将该线单独走线,远离电源线、强电压、大电流线及其他电磁辐射较强的线,或采用屏蔽线,以增强抗干扰能力,避免出现误保护。

对于检测电路出现的问题,一般是电流传感器、取样电阻或检测的门电路问题。电流传感器应用示波器检测,其正常波形应如图2所示。

图2电流传感器波形图若波形不好或出现杂乱波形甚至于无波形,即说明电流传感器有问题,可更换一只新的。对取样电阻问题,有的机子使用时间长了,其阻值会变大,甚至于断路,用万用表可检测出来,应予以更换成原来的阻值的或少小一些的电阻。

对于检测的门电路,应检查在静态时的工作点,若状态不对应更换之。

(4)参数设置问题

对于提升机类或其他(如拉丝机、潜油电泵等)重负荷负载,需要设置低频补偿。若低频补偿设置不合理,也容易出现短路保护。一般以低频下能启动负载为宜,且越小越好,若太高了,不但会引起短路保护,还会使启动后整个运行过程电流过大,引起相关的故障,如IGBT栅极烧断,变频器温升高等。因此应逐渐加补偿,使负荷刚能正常启动为最佳。如图3所示,V1为启动电压,V0为额定输出电压。

图3启动过程的电压曲线

(5)在多单元并联的变频器中,若某一单元出现问题。势必使其他单元承担的电流大,造成单元间的电流不平衡,而出现过流或短路保护。因此对于多单元并联的变频器,应首先测其均流情况,发现异常应查找原因,排除故障。各单元的均流系数应不大于5%。

2.2过流保护

变频器出现过流保护,代码显示“1”,一般是由于负载过大引起,即负载电流超过额定电流的1.5倍即故障停机而保护。这一般对变频器危害不大,但长期的过负荷容易引起变频器内部温升高,元器件老化或其他相应的故障。

图4传感器的波形图

这种保护也有因变频器内部故障引起的,若负载正常,变频器仍出现过流保护,一般是检测电路所引起,类似于短路故障的排除,如电流传感器、取样电阻或检测电路等。该处传感器波形如图4所示,其包络类似于正弦波,若波形不对或无波形,即为传感器损坏,应更换之。

过流保护用的检测电路是模拟运放电路,如图5所示。

图5过流检测电路

在静态下,测A点的工作电压应为2.4V,若电压不对即为该电路有问题,应查找原因予以排除。R4为取样电阻,若有问题也应更换之。

过流保护的另一个原因就是缺相。当变频器输入缺相时,势必引起母线电压降低,负载电流加大,引起保护。而当变频器输出端缺相时,势必使电机的另外两相电流加大而引起过流保护。所以对输入及输出都应进行检查,排除故障。

2.3过、欠压保护

变频器出现过、欠压保护,大多是由于电网的波动引起的,在变频器的供电回路中,若存在大负荷电机的直接启动或停车,引起电网瞬间的大范围波动即会引起变频器过、欠压保护,而不能正常工作。这种情况一般不会持续太久,电网波动过后即可正常运行。这种情况的改善只有增大供电变压器容量,改善电网质量才能避免。

当电网工作正常时,即在允许波动范围(380V±20%)内时,若变频器仍出现这种保护,这就是变频器内部的检测电路出现故障了。一般过、欠压保护的检测电路如图6所示。

图6过、欠压保护的检测电路

当W1调节不当时,即会使过、欠压保护范围变窄,出现误保护。此时可适当调节电位器,一般在网电380V时,使变频器面板显示值(运行中按住“〈”键〉与实际值相符即可。当检测回路损坏时,如图中的整流桥、滤波电容或R1、W1及R2中任一器件出现问题,也会使该电路工作不正常而失控。如有的机子R1损坏造成开路,使该电路P点得不到电压,芯片即认为该处检测不对而出现欠压保护。P点的工作点范围为1.9~2.1V,即对应其电压波动范围。

对于提升机变频器,因回馈电网*染,增加了隔离电路,如图7所示。

图7提升机变频器过、欠压保护的检测电路

有时调节不当也会出现误保护,此时应根据电网的波动仔细调节。因提升机负载在运行中电网是波动的,在提升重物时,电压下降(有的可降20V),在下放时回馈电网电压升高,可根据这种变化进行调节,一般是增大W3,减小W2,直至在稳态下适合为止。

2.4温升过高保护

变频器的温升过高保护(面板显示“5”),一般是由于变频器工作环境温度太高引起的,此时应改善工作环境,增大周围的空气流动,使其在规定的温度范围内工作。

再一个原因就是变频器本身散热风道通风不畅造成的,有的工作环境恶劣,灰尘、粉尘太多,造成散热风道堵塞而使风机抽不进冷风,因此用户应对变频器内部经常进行清理(一般每周一次)。也有的因风机质量差运转过程中损坏,此时应更换风机。

还有一种情况就是在大功率的变频器(尤其是多单元或中高压变频器)中,因温度传感器走线太长,靠近主电路或电磁感应较强的地方,造成干扰,此时应采取抗干扰措施。如采用继电器隔离,或加滤波电容等。如图8所示。

图8温升过高保护的抗干扰措施

2.5电磁干扰太强

这种情况变频器停机后不显示故障代码,只有小数点亮。这是一种比较难处理的故障。包括停机后显示错误,如乱显示,或运行中突然*机,频率显示正常而无输出,都是因变频器内外电磁干扰太强造成的。

这种故障的排除除了外界因素,将变频器远离强辐射的干扰源外,主要是应增强其自身的抗干扰能力。特别对于主控板,除了采取必要的屏蔽措施外,采取对外界隔离的方式尤为重要。

首先应尽量使主控板与外界的接口采用隔离措施。我们在高中压及低压大功率变频器及提升机变频器中采用了光纤传输隔离,在外界取样电路(包括短路保护、过流保护、温升保护及过、欠压保护)中采用了光电隔离,在提升机与外界接口电路中采用了PLC隔离,这些措施都有效避免了外界的电磁干扰,在实践应用中都得到了较好的效果。

再一点就是对变频器的控制电路(主控板、分信号板及显示板)中应用的数字电路,如74HC14、74HC00、74HC373及芯片89C51、87C196等,应特别强调每个集成块都应加退耦电容,即如图9所示。

图9集成电路的退耦电容

每个集成块的电源脚对控制地都应加10μF/50V的电解电容并接103(0.01μF)的瓷片电容,以减小电源走线的干扰。对于芯片,电源与控制地之间应加电解电容10μF/50V并接105(1μF)的独石电容,效果会更好些。笔者曾对一些干扰严重的机型进行过以上处理,效果较好。

对这类故障应逐渐积累经验,不断寻求解决途径。有些机子使用时间太久,线路板上的滤波电容容量不够造成滤波效果差,造成变频器*机或失控,这种情况不太好处理,可更换一块新线路板,一般可解决问题。

3变频器的其他故障

除以上有变频器故障代码显示的故障外,变频器还有一些非显示的故障,现分析如下,供大家参考。

3.1主回路跳闸

这种故障表现为变频器运行过程中有大的响声(俗称“放炮”),或开机时送不上电,变频器控制用的断路器或空气开关跳闸。这种情况一般是由于主电路(包括整流模块、电解电容或逆变桥)直接击穿短路所致,在击穿的瞬间强烈的大电流造成模块炸裂而产生巨大响声。

关于模块的损坏原因,是多方面的,不好一概而论。现仅就笔者所遇到的几类情况加以列举。

(1)整流模块的损坏大多是由于电网的*染造成的。因变频器控制电路中使用可控整流器(如可控硅电焊机、机车充电瓶等都是可控整流器),使电网的波形不再是规则的正弦波,使整流模块受电网的*染而损坏,这需要增强变频器输入端的电源吸收能力。在变频器内部一般也设计了该电路。但随着电网*染程度的加深,该电路也应不断改进,以增强吸收电网尖峰电压的能力。

(2)电解电容及IGBT的损坏主要是由于不均压造成的,这包括动态均压及静态均压。在使用日久的变频器中,由于某些电容的容量减少而导致整个电容组的不均压,分担电压高的电容肯定要炸裂。IGBT的损坏主要是由于母线尖蜂电压过高而缓冲电路吸收不力造成的。在IGBT导通与关断过程中,存在着极高的电流变化率,即di/dt,而加在IGBT上的电压即为:

U=L×di/dt

其中L即为母线电感,当母线设计不合理,造成母线电感过高时,即会使模块承担的电压过高而击穿,击穿的瞬间大电流造成模块炸裂,所以减小母线电感是作好变频器的关键。我们改进电路采用的宽铜排结构效果较好。国外采用的多层母线结构值得借鉴。

(3)参数设置不合理。尤其在大惯量负载下,如离心风机、离心搅拌机等,因变频器频率下降时间过短,造成停机过程电机发电而使母线电压升高,超过模块所能承受的界限而炸裂。这种情况应尽量使下降时间放长,一般不低于300s,或在主电路中增加泄放回路,采用耗能电阻来释放掉该能量。如图10所示。

图10耗能电阻接线图

R即为耗能电阻。在母线电压过高时,使A管导通,使母线电压下降,正常后关断。使母线电压趋于稳定,保证主器件的安全。

(4)当然模块炸裂的原因还有很多。如主控芯片出现紊乱,信号干扰造成上下桥臂直通等都容易造成模块炸裂,吸收电路不好也是其直接原因,应分别情况区别对待,以期把变频器作的更好。

3.2延时电阻烧坏

这主要是由于延时控制电路出问题造成的。

(1)在变频器延时电路中,大多是用的晶闸管(可控硅)电路,当其不导通或性能不良时,就可造成延时电阻烧坏。这主要是开机瞬间造成的。

(2)在变频器运行过程当中,当控制电路出现问题,有的是由于主电路模块击穿,造成控制电路电压下降,使延时可控硅控制电路工作异常,可控硅截止使延时电阻烧坏。也有的是控制变压器供电回路出现问题,使主控板失去电压瞬间造成晶闸管工作异常而使延时电阻烧坏。

3.3只有频率而无输出

这种故障一般是IGBT的驱动电路受开关电源控制的电路中,当开关电源或其驱动的功率激励电路出现故障时,即会出现这种问题。如图11所示。

图11开关电源及其驱动电路框图

在风光变频器中,开关电源一般是选30~35V,±15V或±12V,功率激励的输出为一方波,其幅度为±35V,频率在7kHz左右。检测这几个电压值,用示波器测量功率激励的输出即可加以判别,如图12所示。但更换这部分器件后,应加以调整,使驱动板上的电压符合规定值(+15V、-10V)为宜。

图12功率激励级的输出波形

3.4送电后面板无显示

这主要是提升机类变频器常出现的故障,因此类变频器主控板用的电源为开关电源,当其损坏时即会使主控板不正常而无显示。

这种电源大多是其内部的熔断器损坏造成的。因在送电的瞬间开关电源受冲击较大,造成保险丝瞬间熔断,可更换一个合适的熔断器即可解决问题。有的是其内的压敏电阻损坏,可更换一支新的开关电源。

3.5频率不上升

即开机后变频器只在“2.00”Hz上运行而不上升,这主要是由于外控电压不正常所致。变频器的外控电压是通过主控板的16脚端子引入的,若外控电压不正常,或16脚的内部运放出了问题,即会引起该故障,如图13所示。

图13频率调节电路

这时请检查调节频率用的电位W2(3.9K),测量一下16脚有无0~5V的电压,进而检测运放电路C点工作是否正常。若16脚电压正常,而C点无输出,一般是运放的工作电压不正常所致,应检查其供电电压是否正常或运放是否损坏等。

4结束语

变频器所出现的故障很多,正像维修其他电器一样,有很多是意想不到的问题,需要我们认真分析,弄清工作原理,逐步的把其电路学深学透,才能把握其本质,快速而准确的处理问题,从而更快、更好的服务于用户。

本文只是在作者维修经验的基础上,对变频器的一些常见故障进行了分析探讨,在工作中还需要不断的分析、总结,积累一些常见的维修技巧,为用户排忧解难。也使我们的产品在应用过程中不断改进、升华,使其做的更好,更全面、更完善地服务于广大的用户,尽量少出问题、不出问题,出了问题能及时解决,这正是我们的期望所在。

变频器的控制电路及几种常见故障分析

1引言

随着变频器在工业生产中日益广泛的应用,了解变频器的结构,主要器件的电气特性和一些常用参数的作用,及其常见故障越来越显示出其重要性。

2变频器控制电路

给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,称为控制电路,如图1所示。控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路。

在图 1点划线内,无速度检测电路为开环控制。在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行控制更精确的闭环控制。

1)运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。

2)电压、电流检测电路

与主回路电位隔离检测电压、电流等。

3)驱动电路

为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。

4)I/0输入输出电路

为了变频器更好人机交互,变频器具有多种输入信号的输入(比如运行、多段速度运行等)信号,还有各种内部参数的输出“比如电流、频率、保护动作驱动等)信号。

5)速度检测电路

以装在异步电动轴机上的速度检测器(TG、PLG等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。

6)保护电路

检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。

逆变器控制电路中的保护电路,可分为逆变器保护和异步电动机保护两种,保护功能如下

(1)逆变器保护

①瞬时过电流保护由于逆变电流负载侧短路等,流过逆变器器件的电流达到异常值(超过容许值)时,瞬时停止逆变器运转,切断电流。变流器的输出电流达到异常值,也同样停止逆变器运转。

此主题相关图片如下:

**ca800*/bbs/UploadFile/2005-10/2005101119922257.jpg

图 1

②过载保护

逆变器输出电流超过额定值,且持续流通达规定的时间以上,为了防止逆变器器件、电线等损坏要停止运转。恰当的保护需要反时限特性,采用热继电器或者电子热保护(使用电子电路)。过载是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生。

③再生过电压保护

采用逆变器是电动机快速减速时,由于再生功率直流电路电压将升高,有时超过容许值。可以采取停止逆变器运转或停止快速减速的方法,防止过电压。

④瞬时停电保护

对于数毫秒以内的瞬时停电,控制电路工作正常。但瞬时停电如果达数 10ms以上时,通常不仅控制电路误动作,主电路也不能供电,所以检出后使逆变器停止运转。

⑤接地过电流保护

逆变器负载接地时,为了保护逆变器有时要有接地过电流保护功能。但为了确保人身安全,需要装设漏电断路器。

⑥冷却风机异常

有冷却风机的装置,当风机异常时装置内温度将上升,因此采用风机热继电器或器件散热片温度传感器,检出异常后停止逆变器。在温度上升很小对运转无妨碍的场合,可以省略。

如何测量变频器模块的好坏

测量变频器模块好坏的常见方法:

1、测试整流电路:

找下结果,可以判定电路已出现异常,A.到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。

将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以阻值三相不平衡,说明整流桥有故障.B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或启动电阻出现故障。

2、测试逆变电路:

将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同。将黑表棒N端,,反相应该为无穷大,重复以上步骤应得到相同结果,否则可确定逆变模块有故障。

3、动态测试:在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点:

(1)上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。

(2)检查变频器各接插口是否已正确连接,连接是否有松动,连接异常有时可能会导致变频器出现故障,严重时会出炸机等情况。

(3)上电后检测故障显示内容,并初步断定故障及原因。

(4)如未显示故障,首先检查参数是否有异常,并将参数复归后,在空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障。

(5)在输出电压正常(无缺相、三相平衡)的情况下,负载测试,尽量是满负载测试。

扩展资料:

变频器模块的作用:

1、变频节能:变频器节能主要表现在风机、水泵的应用上。风机、泵类负载采用变频调速后,节电率为20%~60%,这是因为风机、泵类负载的实际消耗功率基本与转速的三次方成比例。当用户需要的平均流量较小时,风机、泵类采用变频调速使其转速降低,节能效果非常明显。

2、在自动化系统中应用:由于变频器内置有32位或16位的微处理器,具有多种算术逻辑运算和智能控制功能,输出频率精度为0.1%~0.01%,且设置有完善的检测、保护环节,因此,在自动化系统中获得广泛应用。例如:化纤工业中的卷绕、拉伸、计量、导丝;

玻璃工业中的平板玻璃退火炉、玻璃窑搅拌、拉边机、制瓶机;电弧炉自动加料、配料系统以及电梯的智能控制等。变提高工艺水平和产品质量方面的应用频器在数控机床控制、汽车生产线、造纸和电梯上的应用。

3、在提高工艺水平和产品质量方面的应用:变频器还可以广泛应用于传送、起重、挤压和机床等各种机械设备控制领域,它可以提高工艺水平和产品质量,减少设备的冲击和噪声,延长设备的使用寿命。采用变频调速控制后,使机械系统简化,*作和控制更加方便,有的甚至可以改变原有的工艺规范,从而提高了整个设备的功能。

4、实现电机软启动:电机硬启动不仅会对电网造成严重的冲击,而且会对电网容量要求过高,启动时产生的大电流和震动对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。

而使用变频器后,变频器的软启动功能将使启动电流从零开始变化,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命,同时也节省设备的维护费用。

参考资料来源:百度百科-变频器维修

参考资料来源:百度百科-变频器

变频器修理处理方法 检测步骤介绍

虽然变频器是一款基础的产品工具,但是在实际使用的过程中,它还有可能会因为许多方面的故障导致一系列的问题,这时候除了求助专业的维修处理机构进行*作以外,更为简单也更为经济方便的方法就是自行进行处理了,比如参考下文所述,从变频器维修处理方法方面入手配合专业的检测工具进行相应的检测,相信可以帮助我们更快更方便地达到维修这方面的目的。那么有意向了解的朋友就和小编起来学习一下吧。

一、变频器修理方法

静态测试

1、测试整流电路

找下结果,可以判定电路已出现异常,A.到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以阻值三相不平衡,说明整流桥有故障.B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或启动电阻出现故障。

2、测试逆变电路

将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒N端,重复以上步骤应得到相同结果,否则可确定逆变模块有故障。

动态测试

在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点:

1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等);

2、检查变频器各接插口是否已正确连接,连接是否有松动,连接异常有时可能会导致变频器出现故障,严重时会出炸机等情况;

3、上电后检测故障显示内容,并初步断定故障及原因;

4、如未显示故障,首先检查参数是否有异常,并将参数复归后,在空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障;

5、在输出电压正常(无缺相、三相平衡)的情况下,负载测试,尽量是满负载测试

故障判断

1、整流模块损坏

通常是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有*染的设备等。

2、逆变模块损坏

通常是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,须注意检查马达及连接电缆。在确定无任何故障下,才能运行变频器。

3、上电无显示

通常是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,*作面板损坏同样会产生这种状况。

4、显示过电压或欠电压

通常由于输入缺相,电路老化及电路板受潮引起。解决方法是找出其电压检测电路及检测点,更换损坏的器件。

5、显示过电流或接地短路

通常是由于电流检测电路损坏。如霍尔元件、运放电路等。

6、电源与驱动板启动显示过电流

通常是由于驱动电路或逆变模块损坏引起。

7、空载输出电压正常,带载后显示过载或过电流

通常是由于参数设置不当或驱动电路老化,模块损坏引起。

上文我们为大家举例介绍的是关于变频器修理方面的处理方法以及检测方面的步骤,由此可以得知,如果变频器出现一系列的故障问题,首先的*作就是配合专业的工具进行检测。比如参考上文所述,就有许多可以供了解的建议,包括检测的技巧以及后续处理维修方面的方法,当然了,如果对于初次*作没有经验的朋友而言,有可能会导致一些不可避免的麻烦,这个时候小编认为可以适当求助一些专业人士的建议或者求助专业的机构进行*作和处理。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修*、3套装修设计方案”,还有装修避坑攻略!点击此链接:【**to8to*/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb】,就能免费领取哦~

本文链接:http://www.hzrhc.com/html/87958273.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件举报,一经查实,本站将立刻删除。